Tuesday, September 12, 2017

Thinking Like Mathematicians

Before jumping in the 4th grade math curriculum, everybody in the Bair's Den is trying to get into the right frame of mind to think like a mathematician. We are trying to break some big myths that many people think about math. These myths include:

  • Some people are math people and are really great at math, and some people just aren't math people and will never be good at math.
  • Being good at math means you can solve problems fast.
  • Math is only about solving problems - number are the most important part of math.
To break these myths, we have been challenging ourselves with a variety of different math activities that haven't involved numbers at all, although they have involved some very famous math theories and conjectures.

Our challenges so far included finding the fewest number of squares in an 11 x 13 rectangle and creating a coordinate grid comparing different objects. Our current challenge showed us this pattern:

Using these first four figures, we had to figure out how the pattern grew. Some of us saw it growing vertically on the left, others saw it growing diagonally on the right. Others saw rows being added to the bottom. After we talked about the different ways it grew we began working on these three questions:
  • What would figure 10 look like, and how many squares would it have?
  • What would figure 55 look like, and how many squares would it have?
  • Can you use exactly 190 blocks to make this figure?
Here's some examples of the work friends did to try to solve this challenge:



We're excited to keep working on this challenge to see if we can figure out the answers today!
 

As we have been working on these different challenges, we've also been thinking about and applying the math practice standards:


These practices focus on the different goals for how we think and act in math. Each student picked one of these practices to be their math goal for the first part of the year, and they made a plan about how they'd like to meet their goal. We're all really excited to see if we can reach our goals and improve our math thinking!

No comments:

Post a Comment